Bivariate Conway–Maxwell–Poisson distribution: Formulation, properties, and inference

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bivariate Conway-Maxwell-Poisson distribution: Formulation, properties, and inference

The bivariate Poisson distribution is a popular distribution for modeling bivariate count data. Its basic assumptions and marginal equi-dispersion, however, may prove limiting in some contexts. To allow for data dispersion, we develop here a bivariate Conway–Maxwell–Poisson (COM–Poisson) distribution that includes the bivariate Poisson, bivariate Bernoulli, and bivariate geometric distributions...

متن کامل

Bivariate Birnbaum-Saunders distribution and associated inference

Univariate Birnbaum–Saunders distribution has been used quite effectively to model positively skewed data, especially lifetime data and crack growth data. In this paper, we introduce bivariate Birnbaum–Saunders distribution which is an absolutely continuous distribution whose marginals are univariate Birnbaum–Saunders distributions. Different properties of this bivariate Birnbaum–Saunders distr...

متن کامل

Bivariate Semi-Logistic Distribution and Processes

Bivariate semi-logistic and Marshall-Olkin bivariate semi-logistic distributions are introduced. Some properties of these distributions are studied. First order autoregressive processes with bivariate semi-logistic and Marshall-Olkin bivariate semi-logistic distributions as marginals are introduced and studied.

متن کامل

Inference with Bivariate Truncated

In this paper we build on previous work for estimation of the bivariate distribution of the time variables T1 and T2 when they are observable only on the condition that one of the time variables, say T1, is greater than (lefttruncation) or less than (right truncation) some observed time variable C1. In this paper, we introduce several results based on the In uence Curve (which we derive in this...

متن کامل

Properties of the Bivariate Confluent Hypergeometric Function Kind 1 Distribution

The bivariate confluent hypergeometric function kind 1 distribution is defined by the probability density function proportional to x1 1 x2 2 1 F1(α; β; −x1 − x2). In this article, we study several properties of this distribution and derive density functions of X1/X2, X1/(X1 + X2), X1 + X2 and 2 √ X1X2. The density function of 2 √ X1X2 is represented in terms of modified Bessel function of the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2016

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2016.04.007